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1 Introduction
Statistics is concerned with the analysis of datasets, which are continually growing bigger, and
at a faster rate; the global datasphere is expected to grow from 33 zettabytes in 2018 to 175
zettabytes by 2025[30]. The scale of this growth is staggering, and continues to outpace attempts
to engage meaningfully with such large datasets.

A complementary exponential growth in computational capacity, described by Moore’s Law,
underlies much of computational advancement over the past half-century[25]. Similar observations
on computer storage posit an increase in density of storage media along with corresponding
decreases in price, which has been found to track lower than expected by Moore’s law metrics[11].
The increasing differentials between the generation of data, computational capacity, and constraints
on data storage, have forced new techniques in computing for the analysis of large-scale data,
with clear solutions still distant.

To take a concrete example of the problem, consider how a statistician may attempt to fit a
novel model for a dataset consisting of roughly 160 million flight datapoints[38], using methods
and computational facilities typical to a small dataset. This is actually a small dataset compared
to many other large datasets, yet it is still not possible to perform an analysis in the same
manner as would usually be conducted on small-scale datasets. R, or any other common statistical
computing system, simply won’t be able to read in the data in the same fashion, as it is too big
to fit in memory. The reason for this failure lies in the memory hierarchy of computers, wherein
different forms of data storage utilised by computers have varying response times and volatility.
Using the Dell Optiplex 5080 as a typical desktop PC build, the statistician has 16 GB of Random
Access Memory (RAM) for fast main memory, to be used as a program data store; and a 256 GB
Solid State Drive (SSD) for slower long-term disk storage[16]. The referenced dataset takes up
roughly 12 GB on disk, increasing to 16 GB when read into R—simultaneously competing for
space with the operating system, which may be 8 GB in the case of Windows 10. There just isn’t
enough space on standard RAM to fit everything, and the modelling process will either crash R
or leach out into swap space on disk as on a UNIX system, which is extremely slow and unstable
(a situation known as “thrashing”)[8]. Furthermore, even if the dataset was halved in size and
able to be read into R or whichever other program used for modelling, operations on the dataset
will necessarily use more memory. The program may potentially create entire copies of data, and
the memory available would quickly be exceeded. The problem can be summed up in the need
for real-time handling and modelling of datasets that are too large to fit in memory.

As a major and growing issue, there have been a plethora of responses over decades, which will
be described in further detail in Section 2 below. None of the responses are entirely satisfactory
for the statistician working with large datasets, who may reasonably be posited to possess the
following demands:

• A platform that can enable the creation of novel models and apply them to larger-than-
memory datasets.

• This platform must allow interactivity.

• It must be simple to use and easy to set up. Ideally, as close to existing systems as possible.

• It must be fast.

• It must take advantage of existing large ecosystems of statistical software.

• It must be robust.
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• It must be flexible and extensible. A computational statistician may create custom classes
and reasonably expect them to work well with the platform.

To this end, the use of the R programming language is a natural starting point. The means for
writing software is typically through the use of a structured, high-level programming language.
Of the myriad programming languages available, the most widespread language used for statistics
is R. In August 2020, R reached its highest rank yet of 8th in the TIOBE index, a ranking of most
popular programming languages, up from ranking 73rd in December 2008[6]. R also has a special
relevance for this proposal, having been initially developed at the University of Auckland by Ross
Ihaka and Robert Gentleman in 1991[15].

Major developments in contemporary statistical computing are typically published alongside
an R code implementation, usually in the form of an R package, which is a mechanism for extending
R and sharing functions. As of March 2021, the Comprehensive R Archive Network (CRAN) hosts
over 17,000 available packages[28].

This project seeks to build and document the statistician’s large-scale modelling platform in
R. Preliminary results have been extremely encouraging to this endeavour, and are described in
more detail in Section 4 below, having led to the creation of the largeScaleR package[5]. There
remains plenty of future work, and this is described in Section 5, with tangible goals outlined in
Section 6.

2 Background
There is more data, more data storage, far more powerful processing ability, and all are on an
exponential path of growth, with standardly available RAM remaining far from capable of servicing
the deluge of data made possible by all of this growth[36]. The problem of larger-than-memory
datasets is certainly not diminishing.

In recent years, the use of the additional transistors in the CPU has been focussed not so
much on increased clock speed as was the case pre-2003, instead granting a greater emphasis on
multicore processing, for speed has met its limiting factors in the excessive heat produced and
power consumed[36].

Software techniques are the best solution to the problem that hardware enables, as there is no
alternative shy of investing in supercomputers, something far out of reach of most individuals and
organisations. The software solution includes the programming in the little, to take advantage of
greater hardware support for concurrency, as well as the design of systems that are architected
in such a fashion so as to surmount constraints in hardware capacity. This project puts greater
focus on the latter, as intelligent programming techniques can always be added to a well-designed
system, but seldom vice versa.

The study of systems capable of handling larger-than-memory data extends back decades,
and spans a very broad literature. Of utmost relevance to this project are modern systems
with statistical capabilities. The approaches can be roughly divided into two main categories:
distributed and local.

• Distributed systems spread the data and processing load across multiple computers. Though
more complex than keeping everything on one computer, they can be faster and more capable
when working with larger data, due to the greater parallelism afforded, as well as the larger
pool of main memory available[12].

• Conversely, local systems, seeking to solve the problem of larger-than-memory data, make
use of a single computer for data processing, taking advantage of the larger data storage
capacity of disk, and often making use of parallel processing.
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A common local solution is to just treat disk memory as an extension of RAM, as working
memory. Some systems do make use of this approach, and will be examined below, but this is a
non-starter for complex analyses on truly large data, as it is orders of magnitude slower than
if the dataset were being held in RAM[1]. The key to a fast and efficient approach is to take
advantage of parallelisation, for both processing and memory advantages.

To parallelise is to engage in many computations simultaneously—this typically takes the
form of either task parallelism, wherein tasks are distributed across different processors; data
parallelism, where the same task operates on different pieces of data across different processors;
or some mix of the two[35]. Parallelism can afford major speedups, albeit with certain limitations.
Amdahl’s law and Gustafson’s law are two relevent attempts to capture the limitations of such
a form of computing, with both pointing to the limitations imposed by inherently serial (non-
parallel) portions of a program, as well as the diminishing returns offered by additional CPU’s
made available to the system [2][14].

An example of an ideal task for parallelisation is the category of embarassingly parallel
workload. Such a problem is one where the separation into parallel tasks is trivial, such as
performing the same operation over a dataset independently[12]. Many problems in statistics fall
into this category, such as tabulation, monte-carlo simulation and many matrix manipulation tasks.
With 16 processors, the 160 million rows of the aforementioned flights dataset may have each
processor simultaneously working on 10 million rows each, giving a potential order-of-magnitude
speedup.

Some additional terminology is made use of in distributed systems. In networks, individual
computers are referred to as nodes, and a distributed system will be said to take advantage of
some number of nodes[18]. The pieces of data that are split up and distributed over the nodes are
referred to as chunks or shards, among a variety of other names. A program reference to these
chunks can take the form of a distributed object, which serves as an object-oriented interface to
enable data manipulation at varying degrees of transparency[10].

The tension between choosing local systems for large-scale data, versus distributed systems
typically lies in the slowdowns and opportunities introduced by complexity.

In favour of local systems for large data, the complexity is significantly lower. Everything is
already in one location, with possibly shared memory, as well as the advantages of coscheduling
allowing parallel streams to be automated. One famous demonstration of standard UNIX tools
on a single machine found a 235-fold speedup in attaining simple summary statistics on a 3.5
GB dataset, over using a Hadoop cluster to perform the same[9]. The parallel stream approach
common to a local system typically has a very minimal memory footprint, with all components
of the system close enough together that data movement between RAM and disk is still fast
enough. However, such an approach falls down when greater flexibility is required. For one-pass
data manipulation it remains valid and indeed a preferable approach, but for complex analyses
involving iteration and very large datasets that demand real-time interactivity, the data is far
better-off in RAM, with RAM speed sitting orders of magnitude above that of even the fastest
available SSD’s[17][20].

This leads to the benefits offered by a distributed system. Among them, the fact that all
working data can potentially be held in RAM across disparate computers can lead to major
speedups, with the caveat being that data movement between machines should ideally be
minimised in order to maintain high speed. For long-running processes, the slowdown from initial
data movement may be rendered minor in comparison with the greater speeds gained through
keeping and manipulating in-memory (“online”) data[10]. The risk of a total-system crash is also
mitigated to a greater extent with distributed systems, as the additional computers may be used
for redundancy, allowing one computer to go down but the system to keep running—even with
backups, this is not possible in a single-computer system.

4



Single Machine

disk.frame disk directory

chunk 1

chunk 2

chunk 3

chunk 4

fst file 1

fst file 2

fst file 3

fst file 4

Figure 1: disk.frame architecture with four chunks

2.1 Local Systems
In the space of local solutions, offloading additional data to disk is a common solution. This
is best illustrated through the disk.frame package[41]. An eponymously named dataframe
replacement class is provided by disk.frame, which is able to represent a data set far larger
than RAM, constrained only by disk size. The mechanism of action is to use chunks of data
on disk, and provide a variety of methods taking advantage of data.frame generics, including
dplyr and data.table functions. disk.frames are actually references to compressed files in a
filesystem directory on disk, with each file serving as a chunk. Such an architecture is represented
in Figure 1.

Operations are performed through manipulation of each chunk separately, loading a constrained
number of chunks into RAM at a time, sparing the computer from dealing with a single monolithic
file[42]. As mentioned above, this breaks down at scale, with the transfer of data from disk to
RAM and back being far too slow for anything particularly big if used for anything more complex
than single-pass statistics.

The chunking and loading strategy also finds its way into statistical models. An aspect of this
stratedy is also offered by disk.frame, with linear modelling and generalised linear modelling
functions calling the biglm package, which builds models a chunk at a time[21].

It is also worth noting that parallelism may be manifested within a single computer and
works well for chunk processing. A number of R packages, disk.frame included, take advantage
of various parallel strategies in order to process large datasets efficiently. One such package is
multicore, now subsumed into the parallel package, that grants functions that can make direct
use of multiprocessor systems, thereby reducing the processing time in proportionality to the
number of processors available on the system[28].

2.2 Distributed Systems
At some stage however, the data gets too big, or analyses too complex, for one single computer.
When this is the case, a variety of distributed system approaches have been put forward.
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Figure 2: SNOW architecture with four chunks

This Section of the field is heavily dominated by major existing systems outside of R, so most
current approaches serve as basic interfaces to the external system, complete with all of the
expected abstraction leaks[34].

Of the few systems which are unique to R, the SNOW (Simple Network Of Workstations)
package stands out. It composes part of the parallel package, which is contained in the standard
R image[37]. Support for distributed computing over a simple network of computers is provided
by SNOW. The general architecture of SNOW makes use of a master process that holds the
data and launches the cluster, pushing the data to worker processes that operate upon it and
return the results to the master. This is represented in Figure 2

Several different communications mechanisms are made use of by SNOW, including ssh and
user-created sockets. It’s greatest shortcoming is the lack of persistent data, and the mechanism
of distribution employed disallows the usage of very large datasets.

The two dominant external-based packages in R revolve around the MPI system, and Spark.
One such package making heavy use of MPI is pbdR[27]. The pbdR (programming with big

data in R) project provides persistent data, with the pbdDMAT (programming with big data
Distributed MATrices) package offering a user-friendly distributed matrix class to program with
over a distributed system[31]. This abstraction breaks down at a certain level of complexity, and
a deep understanding of the powerful MPI system is eventually required; a task out of the league
of most practicing statisticians.

The central interface to Spark in R is given through the Sparklyr package, which combines
common dplyr methods with objects representing Spark dataframes[23]. Simple analyses are
made very simple (assuming a well-configured and already running Spark instance), but custom
iterative models are extremely difficult to create through the package in spite of Spark’s support
for it.

In the search for a distributed system for statistics, the world outside of R is not entirely
barren. The central issue with non-R distributed systems is that their focus is very obviously not
statistics, and this shows in the level of support the platforms provide for statistical purposes.

The Hadoop project provides a system predating and influencing Spark[33]. The project is a
collection of utilities that facilitates cluster computing. Jobs can be sent for parallel processing
on the cluster directly using .jar files, “streamed” using any executable file, or accessed through
language-specific APIs. Hadoop consists of a file-store component, known as Hadoop Distributed
File System (HDFS), and a processing component, known as MapReduce. The processing model
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is powerful, though incapable of the rapid iteration required in complex models[40]. However, the
filesystem is widely used and provides an effective interface to large datasets.

In Python, the closest match to a high-level distributed system that could have statistical
application is given by the Python library dask[29]. Dynamic task scheduling is offered by
dask through a central task graph, as well as a set of classes that encapsulate standard data
manipulation structures such as NumPy arrays and Pandas dataframes. The main difference
from the standard structures is that the dask classes take advantage of the task scheduling,
including online persistence across multiple nodes. It is a large and mature library, catering to
many use-cases, and exists largely in the Pythonic “Machine Learning” culture in comparison to
the R “Statistics” culture. Accordingly, the focus is more tuned to the Python software developer
putting existing ML models into a large-scale capacity. Of all the distributed systems assessed
so far, dask comes the closest to what an ideal platform would look like for a statistician, but
it misses out on the statistical ecosystem of R, provides only a few select classes, and is tightly
bound to the concept of the task graph.

2.3 Evaluation
The task of modelling over larger-than-memory data has a rich history of attempts to provide
a solution. For the requirements listed in Section 1, none of these come close to providing a
satisfactory solution, though the python library dask may come the closest. The approaches
put forward often do solve problems as defined otherwise, but all are either too cumbersome,
incapable of handling large datasets, non-persistent, non-interactive, outside of the statistical
ecosystem, excessively tied to their architecture, or all of the above. The largeScaleR package
is already performing better than some of the surveyed approaches, and Section 4 will outline
what has been demonstrated in the prototype.

3 Methodology
This project centres around the creation of a distributed system in R, serving as a platform for
the implementation and execution of large-scale, multi-node statistical models. It will meet the
statistician’s demands given in Section 1, with further details given in Section 7. Several measures
for the success of the project are proposed.

Principally, a test-driven development methodology is utilised, where unit and regression tests
are created for the largeScaleR system, with the package continually run against these tests
and developed in the direction of passing all tests. A code coverage of these tests nearing 100% is
aimed at, as measured by the covr package. Memory usage and processing times are also profiled
with every release, with the aim for every release of the system to run faster than the previous
release on standard tests.

Real-world datasets are made use of and modelled in development, including the flights dataset
referenced above, as well as the very large New York “taxicab” dataset[26].

Planned major features outlined in Section 5 have specific expected completion times, as
laid out in Section 7, with their success being judged by a combination of automated tests and
real-world usage, and summarised in feature-specific reports including in-depth comparisons to
existing software projects with such features.

As the project matures and becomes feature-wise comparable to existing systems, benchmarking
will take place on existing hardware, such as the Statistics department’s Ihaka cluster. The
principal systems for comparison are Hadoop and its R frontends, Spark through Sparklyr, and
dask, among others. Real datasets, such as flights or taxicab, as well as realistic and complex
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Function Description
start() Start the cluster, given some vector of hostnames.
do.dcall() Perform some given function on a distributed object.
read.dcsv() Read the appropriate pieces of a csv file that has been scat-

tered along the cluster prior and return the distributed object
reference.

distribute() Split up and scatter the chunks of some local object across the
cluster, returning the distributed object reference to the chunks.

emerge() Copy a remote chunk or distributed object to the local user,
and re-combine if needed.

preview() Print a small snapshot of the distributed object, including
potential errors.

split() and combine() Methods that when defined, grant a class access to automatic
distribute() and emerge() functionality.

worker() Used by the start() function to initialise a worker.
final() Automatically run at the end of an R session to shut down the

cluster.
alignment() Used in the worker evaluation process to align distributed ob-

jects of disparate sizes in order to implement recycling

Table 1: Top 10 most important functions in the largeScaleR package

models, such as Random Forest, or a Generalised Linear Model, will be used to test the systems
in detail.

All referenced milestones and features are accompanied by formal reports, with the more
significant to be submitted for publishing in arXiv, the R Journal, JSS, or similar.

Further work will continue from the existing prototype described in Section 4.
The project is fully open-source. Progress on written PhD work and experimentation is freely

accessible from the jcai849/phd GitHub repository, and work on the largeScaleR package is
available from the jcai849/largeScaleR GitHub repository[5].

4 Preliminary Results
To overcome the problem of large-scale statistical analysis in R, what is needed is a platform
that is fast and robust, with a focus on a simple interface for fitting statistical models, and the
flexibility for implementation of arbitrary new models within R. As of May 2021, a prototype
distributed system holding many of the described desired characteristics, has been implemented
in R as part of this research. This system is tentatively named largeScaleR, and takes the form
of an R package, complete with minor documentation and a moderate proportion of tests. It has
been used to successfully read and manipulate data over a cluster of multiple nodes, including
multiple processes on each node, as well as non-trivial distributed manipulations such as tabling
of dataframes, all operating at a very high speed of operation. As it currently stands, the package
comprises around 230 individual functions. A table of the 10 most important functions, and their
descriptions, is given in Table 1.
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Figure 3: Example distributed object reference relations

4.1 Overview of largeScaleR
The system operates in a very loosely coupled manner between processes, each able to send
requests indirectly to any other, equally functional as a peer-to-peer network as a master-worker
setup. A user process, treated as something akin to a master process, is the typical initator in
requests. A master process runs as a regular R session, operated interactively by the user or by
batch script. This master process can then initialise other processes, sitting on any node, to
perform work. These secondary processes are dubbed “worker processes”.

The worker processes are entirely independent of the master process, and none of these processes
contain any information to identify other processes. The only mechanism these processes have to
communicate is via a communication queue, which serves as the primary mechanism behind the
operation of the main conceptual pieces interacted with by a user: distributed objects.

Distributed objects are a means of access to chunks of objects on a distributed system[10].
They serve as a reference that acts as a transparent handle to fragmented referents (chunks) over
a distributed system, with each chunk being a portion of data residing on some worker process.

To take a concrete example, consider the flights dataset as described above. Assume that
the dataset is split into four pieces row-wise, with the first two pieces residing on two separate
processes, and the last two on a single process. Such a topology is capable of being represented
in the largeScaleR system, with diagrammatic representation as in Figure 3.

Distributed object references are effectively proxies, with generic methods passing on their
standard form to the constituent chunks of the distributed object, returning another distributed
object as reference to the return value of the methods acting on the chunks. The returned
distributed object is given immediately, with worker processing occuring asynchronously, giving
lazy, future-like, behaviour to distributed objects[3].

Each chunk has a “descriptor”—some unique name that exclusively references that chunk.
When they are not performing operations on a chunk, workers are monitoring all of the queues
whose names correspond to the descriptors of the chunks which the respective worker holds.
Actions to be performed on the chunks are transmitted through these queues.

The master process enacts requests on these queues through methods on the distributed
objects being intercepted and sent as possibly modified messages to their referent chunk queues,
where they are then operated upon by the worker process. Key to the flexibility of largeScaleR
is that the queue serves as a level of indirection, so the requesting process doesn’t need to know
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Figure 4: Example distributed object communication relations with redundancy example in
chunk 1

precisely where a chunk is stored, only that it can be reached via its queue. This flexibility,
mirroring the benefits of information hiding encouraged by message-passing object-oriented
programming, allows chunks to be held arbitrarily, including on multiple nodes simultaneously.
The capacity for redundancy grants future potential for fault tolerance and resilience to nodes
crashing. Figure 4 depicts this additional detail, continuing from the example of the flights
dataset, with an additional process holding a redundant first chunk.

A major supporting component of the system’s distributed architecture is the act of “emerging”,
wherein a reference is used to pull all of its referents locally[10]. This takes place through directly
sending serialised chunks to the requester, where methods exist to combine them.

Multivariate manipulations of the data make use of emerging on the worker end, where
multiple distributed objects are referenced in one single function request on a queue, and the
worker must determine the appropriate alignment of chunks, including the use of R’s recycling
rules, before emerging all distributed objects and performing the operation.

Distributed objects stand-in for regular R objects, and can represent any class that has split
and combine methods defined. These include all atomic vectors, lists, dataframes, matrices, and
arbitrary user-created classes.

Another key aspect to the architecture of the system is detailed logging, with all changes
of state in a node recorded and the information dispatched to a central logger, which allows
monitoring of the system in one location. The collection of logs is sufficient to build a complete
picture of the system, with a Model-View-Controller pattern in an external program able to parse
the logs, calculate system state, and display that in a simple interface[13].

4.2 largeScaleR System Usage Patterns
An exceedingly important consideration for the user is the manner in which the program is
interfaced with.

As mentioned above, the largeScaleR program is distributed as an R package, and initial
setup follows standard package protocols.

The system starts through getting a cluster running. It is assumed that the hardware and
network is already set up. If the largeScaleR cluster is already running, the master can just
connect directly, with some descriptive functions entered by the user allowing it to connect. The
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cluster can be initialised entirely by the master session, through the use of functions taking a simple
description of the intended cluster. For ease of use, this can be given through a programmable
configuration file describing the nature of the network, including addresses and specialised services
such as a communication server and log server, as well as descriptions of the master and all the
worker processes.

Upon successfully running the cluster, all processes involved will log any changes in state,
including which chunks are held by which workers, and this can be viewed in an included interface.

Data is initialised in the system through several different pathways. The most straightforward
for the user is to take existing data in an R session, and run a package-provided method on the
data to distribute and form a reference to it. This serves to distribute the data as chunks across
a number of worker processes, commonly referred to as “scattering” in MPI parlance[39]. This is
a similar interface to that of the SNOW package[37]. While good for medium-sized data and
demonstration purposes, it is unrealistic in that by definition, very large data is unable to fit in
the memory of the master R session for it to be sent out in the first place.

Therefore a more standard method of initialisation when data originates from local disk is to
use a package-provided reading function that streams raw data from a csv file or similar from
disk through a root communications queue and into all workers. This is acknowledged to be
inefficient, but it currently works well under all tests when data is not already distributed. Using
the flights dataset as an example, this method reads in the dataset a limited number of rows at a
time, and propogates each read as a chunk to some node via the queue system. Each chunk may
be limited by size as well, so that the 160 million rows may be scattered into 100 pieces of 1.6
million rows each, distributed across some arbitrary number of machines.

The fastest method of data initialisation follows the creation of a character vector Listing either
URL’s or files local to each of the workers. This is then distributed to the workers and an appropriate
read operation is pushed to them via the distributed character vector. This is the only method
enabling full parallelisation, and it is general enough to be extended for access to distributed
filesystems such as HDFS.

Alongside distribution of the data, the user is returned a distributed object to use for referencing
the distributed data. In the case of the third method described, this occurs near-instantaneously,
with the data being read concurrently.

The data referenced by distributed objects can be sent from workers more simply; once
established, an emerge() method is run over a distributed object, and the underlying chunks
are sent directly from the worker, to be combined at the master end. Such movement is taken
advantage of by workers as well, when they are faced with operations on multiple disparate
distributed objects—this is hidden from the user, however.

The benefits of distributed objects grow commensurately with their degree of transparency,
and largeScaleR has transparency as a central goal. Many common functions have methods
provided operating on distributed objects, including most Group methods such as Ops, Math,
and Summary. More complex methods such as table() and rbind() are also given, and for very
simple analyses, these are often enough to serve as the backbone of the analysis until the data
is summarised sufficiently that an emerge() can be performed and more complex analyses run
locally.

Alternatively, an extra layer of control is granted to the user looking for more than pre-formed
functions: functionality inspired by the do.call() function in R allows passing anonymous or
existing functions, along with a list of distributed and potentially local data, and the provided
functions are run over the referent data pointed to by the distributed objects. A distributed
object referring to the results is returned. This is actually how most of the transparent methods
were implemented, with the distributed do.call() serving as a wrapped intermediary. Such
a technique is equivalent to a Map, with a reduce also possible through either reducing at the
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> init("config" )

> cols <- c("Year" ="integer" ,"Month" ="integer" ,"DayofMonth" ="integer" ,
+ "DayOfWeek" ="integer" ,"DepTime" ="integer" ,"CRSDepTime" ="integer" ,
+ "Ar ..." ... [TRUNCATED]

> flights <- read(localCSV("/tmp/1987flights.csv" , header=TRUE, colTypes = cols),
max.size=1024^2)

Listing 1: Initial input to the distributed system

worker end, in parallel, or even followed by an emerge() and local reduction[24].

4.3 Example Session
For the purposes of demonstration, an example session with the prototype largeScaleR package
is given. The data is a subset of the flights dataset, including the latter months of the 1987 flights.
The object of investigation in this simple analysis is the variation in cancellation of Monday
flights along different months.

The cluster is started as in Listing 1, with an init() function, which reads a configuration file
describing the cluster. The flights data is then read and distributed with column type descriptions,
at a small chunk size for the purpose of demonstrating a large number of chunk references.

Upon successful reading, this dataset exists as a distributed object reference in the user session,
serving as a proxy object pointing to the many chunks distributed across processes and hosts.
Printing the flights object reveals the number of references as 122, as shown in Listing 2. A
preview() of the distributed object can be taken, which pulls a portion of the first chunk for
viewing. Standard functions such as nrow() behave as expected on the distributed object. “Meta”
functions that give information on the distribution of the object can be run as well, including
information on descriptors with desc() and the hostnames of where each chunk is stored with
host().

To attain a table of Monday flights, standard R methods of data manipulation can be used,
shown in Listing 3. Creating a logical vector and using it to subset the originating data,
a mechanism known as a Boolean mask, is commonly performed in R, and enabled entirely
transparently in largeScaleR. The creation of such a vector in distributed fashion involves a
significant amount of work behind the scenes, including the distribution of the comparative
operator (1L in this case), communications regarding the intended function to be performed, and
achieving the appropriate alignment of the comparative operator for recycling. To demonstrate
functionality, the sum() of the distributed logical vector is taken and should be found to be the
same as the length() of the subset resulting from the distributed logical vector. These vectors,
like all distributed objects, can be previewed, regardless of underlying class. Finally, a table()
method exists to tabulate the chunks of the distributed vectors in parallel, and combine them
locally. This can then be used for further analysis, such as in a χ2-test or similar.

4.4 Issues Encountered
The initial development of largeScaleR has been highly experimental, with the current offering
being the third total rewrite. While the development process has been flexible enough to
accomodate this, persistent issues inherent in the field have been repeatedly appearing.
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> print(flights)
Distributed Object Reference with 122 chunk references.
First chunk reference:
Chunk Reference with Descriptor 1
> preview(flights)

Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime
1 1987 10 14 3 741 730 912 849
2 1987 10 15 4 729 730 903 849
3 1987 10 17 6 741 730 918 849
4 1987 10 18 7 729 730 847 849
5 1987 10 19 1 749 730 922 849
6 1987 10 21 3 728 730 848 849

UniqueCarrier FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime
1 PS 1451 NA 91 79 NA
2 PS 1451 NA 94 79 NA
3 PS 1451 NA 97 79 NA
4 PS 1451 NA 78 79 NA
5 PS 1451 NA 93 79 NA
6 PS 1451 NA 80 79 NA

ArrDelay DepDelay Origin Dest Distance TaxiIn TaxiOut Cancelled
1 23 11 SAN SFO 447 NA NA 0
2 14 -1 SAN SFO 447 NA NA 0
3 29 11 SAN SFO 447 NA NA 0
4 -2 -1 SAN SFO 447 NA NA 0
5 33 19 SAN SFO 447 NA NA 0
6 -1 -2 SAN SFO 447 NA NA 0

CancellationCode Diverted CarrierDelay WeatherDelay NASDelay SecurityDelay
1 NA 0 NA NA NA NA
2 NA 0 NA NA NA NA
3 NA 0 NA NA NA NA
4 NA 0 NA NA NA NA
5 NA 0 NA NA NA NA
6 NA 0 NA NA NA NA

LateAircraftDelay
1 NA
2 NA
3 NA
4 NA
5 NA
6 NA
> nrow(flights)
[1] 1311826
> desc(flights)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 ...

> host(flights)
[1] "127.0.0.2" "127.0.0.2" "127.0.0.2" "127.0.0.2" "127.0.0.2" "127.0.0.2"
[7] "127.0.0.3" ...

Listing 2: Exploration of the structure of the flights dataset
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> isMondayFlights <- flights$DayOfWeek == 1L

> print(isMondayFlights)
Distributed Object Reference with 122 chunk references.
First chunk reference:
Chunk Reference with Descriptor 246

> preview(isMondayFlights)
[1] FALSE FALSE FALSE FALSE TRUE FALSE

> sum(isMondayFlights)
[1] 190711

> mondayFlights <- subset(flights, isMondayFlights)

> length(mondayFlights)
[1] 190711

> cancelledMondays <- table(mondayFlights$Month, mondayFlights$Cancelled)

> print(cancelledMondays)

0 1
10 58573 670
11 72283 774
12 55320 3091

Listing 3: Dataset manipulation to attain final table
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Communication is one such issue. Communication between processes in largeScaleR uses
redis queues, with blocking pop operations to read from them. An S3 “message” class was defined
in largeScaleR to standardise communication between nodes and is the only accepted form of
message to be placed and parsed from a queue. This has proven to be a complex model, with the
internal handling of queues having major effects on the manner of communication taking place in
the system. Alternative communication protocols have the same associated issue, and there has not
been one single obvious communications system that grants great implementation-independence,
though redis surely comes the closest[7].

Following acts of communication, the evaluation of a message has its own complexities, with
the following example given as the current implementation with two distributed objects:

1. The distributed objects first go through a complex act of alignment.

2. They are all compared with the target chunk, and aligned accordingly.

3. If the beginning and end of the target chunk are completely outside those of the offered
object, the indices of the object corresponding to those at the correct corresponding multiple
are taken, and this object is then emerged. In this way, recycling is implemented in a
distributed fashion, with each worker determining the appropriate recycle.

4. Once all appropriate chunks are emerged, a regular do.call is run with the function and
now-local objects

For alignment to take place, metadata associated with each chunk, such as its corresponding
beginning and end indices, as well as its deduced size, must be associated with a distributed object
before it is made use of. As there is purposefully no mechanism for responders to communicate
with requesters, an alternative mechanism was devised; metadata requests operate just as any
other distributed function call, using the standard distributed do.call interface, but the functions
sent are unique to the chunk they are associated with, using metalinguistic evaluation to create a
function that when evaluated on the worker end, sends the metadata information to a unique
temporary queue, which is then listened to at the requester end, popped, and returned. The infinite
possible forms of this implementation, each with their own unique efficiencies and drawbacks, has
been a source of continuous research, with data structure alignment being a research project in
its own right[4][19].

Other issues include the difficulty of debugging and testing a parallel/distributed system, as
existing R tools are set up for serial code evaluation, without taking into consideration complexities
such as the non-deterministic nature of communication between computers of varying speeds and
loads. Race conditions, that is, behaviour dependent on timing, also become a problem where
for example, a computer blocks and awaits results from another computer, which in turn only
returns results based on some future input from the original, which would never arrive. Such
conditions are very difficult to determine even in languages that specifically provide a framework
for testing race conditions, as in most langauages with threading support, and are even harder to
debug, test for, and eliminate in the open-ended system being created[32]. Synchronisation of the
system is another related problem cropping up, again serving as a research project in itself. So
far, the best results gained have been to deny the possibility of synchronisation, and engineer the
processes comprising the system to be independent of each other as much as practicable.

5 Future Work
To improve upon the preliminary results and other systems, there are several problem-areas that
are planned to be worked upon.
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For it to function as well as any other distributed system, largeScaleR must exhibit fault
tolerance. This is needed in every large distributed system, as each machine that comprises it
may fail with some probability p. A system with n machines will fail with probability 1 − (1 − p)n,
and the system will almost certainly fail as n → ∞, for any 0 < p ≤ 1 as may be expected in
reality. Thus redundancy and tolerance of machine faults is essential at scale. This is possible
to implement in largeScaleR without any major rewrite, as it has been architected with fault
tolerance in mind.

More efficient memory usage will serve to improve the efficiency of the system. With memory
being the motivating constraint, improvements on software usage of it translate to a more efficient
system in the large. As the system currently stands, there is some intelligent caching being
performed, but it can stand to have at least half of the current memory footprint, particularly
through further work on supporting packages, which this project can contribute to. Such external
contributions serve to aid not only the largeScaleR package, but the state of computational
statistics and the open source community in general.

Interfacing with other systems is another important feature that will require more work. HDFS
is one example among many filesystems, such as EFS, which are already widely used in the sphere
of big data, and present a useful opportunity to provide a native interface. Hadoop may also
be interfaced with in MapReduce jobs, whether for populating data or serving as a portion of
processing—this remains to be explored in detail, and is certain to offer a far higher ease-of-use
to those with data already within these systems.

The creation of a more user-friendly and informative monitoring system will also serve as a
great boon to the usability of the package.

The implementation of a variety of models, serving equally as proof-of-concept and for
providing direction to the project, will be a major priority. Existing modelling systems that
have flexibility for parallelisation or streaming can be taken advantage of, with examples being
the biglm package as well as more experimental work such as that produced by sampling and
one-step polishing[21][22].

All of these features are meaningless if they are not demonstrated and published, and to
that end, the goal of publishing the largeScaleR package on CRAN has been set. This will
be co-ordinated with articles relating to testing the package at a large scale. Such an article or
technical report may include benchmarking a novel analysis on the platform with real-world data
at a scale of 64+ nodes and 100+ GB data source size.

6 Objectives & Goals
The objective of this research project is to create a platfom for large-scale statistical computing,
utilising the versatility and power of R. Such a platform will allow statisticians to easily define
and run complex distributed algorithms from within the R environment, rather than having to
rely on external tools that never had statistical computation as a goal. This platform will be
demonstrated through the implementation of iterative models in R, and applying these models to
real-world tasks on large-scale problems.

The following tasks will be undertaken as a part of the proposed research:

1. Development of further proposed platform features, including:

(a) Fault tolerance.
(b) Efficient memory usage through transient data and command chaining.
(c) Interfaces with external systems such as Hadoop.
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2. The demonstration of such a platform through implementing complex iterative statistical
models on larger-than-memory datasets, including a Generalised Linear Model and variations
thereof, as well as some multivariate techniques such as PCA or cluster analysis.

3. Publishing the largeScaleR package on CRAN. This requires additional development in-
cluding:

(a) Stability as may be expected from 90+% test coverage.
(b) Full documentation for all base functions.
(c) A package vignette.
(d) Passing CRAN checks.

4. Contributing to supporting packages.

5. Publishing a technical report on the Stats blog, or arXiv.

6. Publishing an article in an international, refereed journal, such as JSS, the R Journal, or
similar.

7. Presenting on the platform at useR!, or similar R developer conferences.

8. Benchmarking a novel analysis on the platform with real-world data at a scale of 64+ nodes
and 100+ GB data source size.

7 Deliverables and Program Schedule
All provisional goals have been completed, with the goal of proposal approval being contingent
on the committee. A description of the goals and statements on their completion follows:

1. Approval of the full thesis proposal by the appropriate departmental/faculty postgraduate
committee. This will be granted contingent on the reception of this proposal.

2. A substantial piece of written work, such as a literature review, completed to the satisfaction
of the main supervisor. A 15,000 word literature review document has been produced, at a
draft stage that is completed to the satisfaction of the main supervisor. This can be found
in the phd git repository under doc/lit-review.tex.

3. Ethics approval/s and/or permissions obtained for the research (if required). No ethics
approval or permissions are required.

4. Attendance at one of the Doctoral Skills Programme Induction Days. This was completed
on 2020-05-29.

5. Successful completion of the Academic Integrity Module. This was completed during
undergraduate study.

6. A needs analysis to determine training and other requirements that must be completed
before candidature can be confirmed. This was completed, with the document presented to
the PYR committee.

7. Completion of a health and safety risk assessment and training for any laboratory/stu-
dio/field and related work activities. No health and safety training was required for the
type of work needed for this project.
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Date Speaker Title
2020-19 Malia Puloka Posing Investigative Questions about Categorical Data—a

Year 9 Case Study
2020-07-22 Yifu Tang Likelihood Approximations for Time Series and Calibration

of Approximate Bayesian Credible Sets
2020-07-29 Luke Boyle Understanding Surgical Outcomes in New Zealand
2020-11-12 Andrew Holbrook Bayes in the Time of Big Data
2020-11-24 Richard Perry Modelling for COVID in Official Economic Time Series
2020-11-25 Rolf Turner A Versatile Discrete Distribution
2020-12-02 Innocenter Amina Integrative Analysis of High-Dimensional Data with Appli-

cation to Soil Microbiome Data
2021-02-25 Charco Hui Natural Language Processing in Clinical Trials
2021-03-31 Zehua Zang Branching with Decision Detection

Table 2: Talks attended as part of first year goals

8. Undertake Diagnostic English Language Needs Assessment (DELNA) online screening. If
a full assessment is advised, complete full diagnostic test and participate in any language
enrichment recommended by the DELNA Language Advisor. This was completed during
undergraduate study.

9. Write a review of existing methods and literature on approaches to distributed computing
with R and current solutions in other language/systems with similar goals for statistical
modelling like Python or Spark, to the sa tisfaction of the primary supervisor. This was
completed and can be found in the phd git repository under doc/survey*.

10. Implement a prototype R software capable of performing operations on multiple chunks of
data in parallel on different machines and use the prototype to implement one statistical
model, to the satisfaction of the primary supervisor. This has been satisfied through the
development of the largeScaleR package.

11. Attend at least 10 relevant research presentations per annum (student needs to verify
participation by filling out and handing in the departmental attendance form for each
presentation to the Statistics Department office . This has been completed, with the talks
attended summarised in table 2, attendance at PhD talks day counting for double, and
hard copy forms with further details available at the Statistics Department Office.

12. Participate in the Department of Statistics PhD Talks Day and/or give a departmental
seminar, to the satisfaction of the main supervisor. Also, maintain a personal profile page
(www.directory.auckland.ac.nz), providing information on scholarly activities and objectives
to the satisfaction of the main supervisor and a Department of Statistics PhD Officer. This
proposal will accompany a departmental seminar, and the personal profile page can be
located at https://directory.auckland.ac.nz/people/profile/jcai849.

13. Attendance at one of the Faculty of Science Doctoral Induction Workshops. This was
completed on 2020-09-16.

An approximate timeline of projected future work completion is given in Table 3.

18

https://directory.auckland.ac.nz/people/profile/jcai849


Date Event
2021-06 Submitting a technical report for publication in the Stats Tech Blog, or arXiv
2021-07 Presenting on the platform at UseR! or a similar developer conference
2021-12 Platform feature development
2022-02 Publishing package on CRAN
2022-03 Submitting an article relating to the research for publication in the R Journal, JSS,

JCGS, or similar
2022-05 Development of complex statistical model demonstration for package
2022-09 Benchmarking at scale
2023-05 Thesis submission

Table 3: A timeline of future work

8 Budget
The development of the project itself, revolving around open-source software, does not come
with any budgeting demands. However, the field of research is rapidly moving, and requires
conference attendance and presentations in order to maintain relevance. This has been budgeted
at $1000.00 per annum, with the funds to be derived from the Postgraduate Research Student
Support (PReSS) account, on an as-needed basis. This is referenced in the Doctoral Provisional
Year Review document, and is less than the budget cap of $1200.00 for the Statistics Department.
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